Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 623(7987): 608-615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938768

RESUMO

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Assuntos
Linfócitos T CD4-Positivos , Herpesvirus Humano 6 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Ativação Viral , Latência Viral , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Ensaios Clínicos como Assunto , Regulação Viral da Expressão Gênica , Genômica , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Herpesvirus Humano 6/fisiologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Encefalite Infecciosa/complicações , Encefalite Infecciosa/virologia , Receptores de Antígenos Quiméricos/imunologia , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/virologia , Análise da Expressão Gênica de Célula Única , Carga Viral
2.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856115

RESUMO

Cancer-associated fibroblasts (CAFs) were presumed absent in glioblastoma given the lack of brain fibroblasts. Serial trypsinization of glioblastoma specimens yielded cells with CAF morphology and single-cell transcriptomic profiles based on their lack of copy number variations (CNVs) and elevated individual cell CAF probability scores derived from the expression of 9 CAF markers and absence of 5 markers from non-CAF stromal cells sharing features with CAFs. Cells without CNVs and with high CAF probability scores were identified in single-cell RNA-Seq of 12 patient glioblastomas. Pseudotime reconstruction revealed that immature CAFs evolved into subtypes, with mature CAFs expressing actin alpha 2, smooth muscle (ACTA2). Spatial transcriptomics from 16 patient glioblastomas confirmed CAF proximity to mesenchymal glioblastoma stem cells (GSCs), endothelial cells, and M2 macrophages. CAFs were chemotactically attracted to GSCs, and CAFs enriched GSCs. We created a resource of inferred crosstalk by mapping expression of receptors to their cognate ligands, identifying PDGF and TGF-ß as mediators of GSC effects on CAFs and osteopontin and HGF as mediators of CAF-induced GSC enrichment. CAFs induced M2 macrophage polarization by producing the extra domain A (EDA) fibronectin variant that binds macrophage TLR4. Supplementing GSC-derived xenografts with CAFs enhanced in vivo tumor growth. These findings are among the first to identify glioblastoma CAFs and their GSC interactions, making them an intriguing target.


Assuntos
Fibroblastos Associados a Câncer , Glioblastoma , Humanos , Glioblastoma/genética , Transcriptoma , Variações do Número de Cópias de DNA , Células Endoteliais , Análise de Sequência de RNA
3.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993266

RESUMO

Tumor-associated neutrophil (TAN) effects on glioblastoma biology remain under-characterized. We show here that 'hybrid' neutrophils with dendritic features - including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate MHCII-dependent T cell activation - accumulate intratumorally and suppress tumor growth in vivo . Trajectory analysis of patient TAN scRNA-seq identifies this phenotype as a polarization state which is distinct from canonical cytotoxic TANs and differentiates intratumorally from immature precursors absent in circulation. Rather, these hybrid-inducible immature neutrophils - which we identified in patient and murine glioblastomas - arise from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a potent contributor of antitumoral myeloid APCs, including hybrid TANs and dendritic cells, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow - such as intracalvarial AMD3100 whose survival prolonging-effect in GBM we demonstrate - present therapeutic potential.

4.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34003803

RESUMO

Metastases cause 90% of human cancer deaths. The metastatic cascade involves local invasion, intravasation, extravasation, metastatic site colonization, and proliferation. Although individual mediators of these processes have been investigated, interactions between these mediators remain less well defined. We previously identified a complex between receptor tyrosine kinase c-Met and ß1 integrin in metastases. Using cell culture and in vivo assays, we found that c-Met/ß1 complex induction promoted intravasation and vessel wall adhesion in triple-negative breast cancer cells, but did not increase extravasation. These effects may have been driven by the ability of the c-Met/ß1 complex to increase mesenchymal and stem cell characteristics. Multiplex transcriptomic analysis revealed upregulated Wnt and hedgehog pathways after c-Met/ß1 complex induction. A ß1 integrin point mutation that prevented binding to c-Met reduced intravasation. OS2966, a therapeutic antibody disrupting c-Met/ß1 binding, decreased breast cancer cell invasion and mesenchymal gene expression. Bone-seeking breast cancer cells exhibited higher levels of c-Met/ß1 complex than parental controls and preferentially adhered to tissue-specific matrix. Patient bone metastases demonstrated higher c-Met/ß1 complex than brain metastases. Thus, the c-Met/ß1 complex drove intravasation of triple-negative breast cancer cells and preferential affinity for bone-specific matrix. Pharmacological targeting of the complex may have prevented metastases, particularly osseous metastases.


Assuntos
Neoplasias da Mama , Integrina beta1 , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-met , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
5.
Bone ; 137: 115395, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360898

RESUMO

Craniosynostosis (CS), the premature fusion of one or more cranial sutures, is a relatively common congenital anomaly, occurring in 3-5 per 10,000 live births. Nonsyndromic CS (NCS) accounts for up to 80% of all CS cases, yet the genetic factors contributing to the disorder remain largely unknown. The RUNX2 gene, encoding a transcription factor critical for bone and skull development, is a well known CS candidate gene, as copy number variations of this gene locus have been found in patients with syndromic craniosynostosis. In the present study, we aimed to characterize RUNX2 to better understand its role in the genetic etiology and in the molecular mechanisms underlying midline suture ossification in NCS. We report four nonsynonymous variants, one intronic variant and one 18 bp in-frame deletion in RUNX2 not found in our study control population. Significant difference in allele frequency (AF) for the deletion variant RUNX2 p.Ala84-Ala89del (ClinVar 257,095; dbSNP rs11498192) was observed in our sagittal NCS cohort when compared to the general population (P = 1.28 × 10-6), suggesting a possible role in the etiology of NCS. Dual-luciferase assays showed that three of four tested RUNX2 variants conferred a gain-of-function effect on RUNX2, further suggesting their putative pathogenicity in the tested NCS cases. Downregulation of RUNX2 expression was observed in prematurely ossified midline sutures. Metopic sites showed significant downregulation of promoter 1-specific isoforms compared to sagittal sites. Suture-derived mesenchymal stromal cells showed an increased expression of RUNX2 over matched unfused suture derived cells. This demonstrates that RUNX2, and particularly the distal promoter 1-isoform group, are overexpressed in the osteogenic precursors within the pathological suture sites.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Craniossinostoses , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Suturas Cranianas , Craniossinostoses/genética , Variações do Número de Cópias de DNA , Mutação com Ganho de Função , Humanos
6.
Cancer Res ; 80(7): 1498-1511, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32041837

RESUMO

Glioblastoma (GBM) responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance toward the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neoangiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient GBMs confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant versus bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of antiangiogenic therapy. SIGNIFICANCE: Bevacizumab resistance in GBM is associated with mesenchymal/glycolytic shifts involving YKL-40 and ZEB1. Targeting ZEB1 reduces bevacizumab-resistant GBM phenotypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1498/F1.large.jpg.


Assuntos
Inibidores da Angiogênese/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Adulto , Idoso , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/metabolismo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lignanas/farmacologia , Lignanas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores
7.
Semin Cancer Biol ; 66: 75-88, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472232

RESUMO

Autophagy is a lysosomal-dependent degradation process that is highly conserved and maintains cellular homeostasis by sequestering cytosolic material for degradation either non-specifically by non-selective autophagy, or targeting specific proteins aggregates by selective autophagy. Autophagy serves as a protective mechanism defending the cell from stressors and also plays an important role in enabling tumor cells to overcome harsh conditions arising in their microenvironment during growth as well as oxidative and non-oxidative injuries secondary to therapeutic stressors. Recently, autophagy has been implicated to cause tumor resistance to anti-angiogenic therapy, joining an existing literature implicating autophagy in cancer resistance to conventional DNA damaging chemotherapy and ionizing radiation. In this review, we discuss the role of angiogenesis in malignancy, mechanisms of resistance to anti-angiogenic therapy in general, the role of autophagy in driving malignancy, and the current literature in autophagy-mediated anti-angiogenic therapy resistance. Finally, we provide future insight into the current challenges of using autophagy inhibitors in the clinic and provides tips for future studies to focus on to effectively target autophagy in overcoming resistance to anti-angiogenic therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Animais , Autofagia/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/patologia , Microambiente Tumoral/efeitos dos fármacos
8.
Semin Oncol ; 46(3): 284-290, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31488338

RESUMO

Initial studies on cancer primarily focused on malignant cells themselves. The overarching narrative of cancer revolved around unchecked and rapidly proliferating cells. Special attention was given to the molecular, genetic, and metabolic profiles of isolated cancer cells in hopes of elucidating a critical factor in malignancy. However, the scope of cancer research has broadened over the past few decades to include the local environment around cancer. It has become increasingly apparent that the immune cells, vascular networks, and the extracellular matrix all have a part in cancer progression. The impact of the extracellular matrix is particularly fascinating and key stromal changes have been identified in various cancers. Pioneering work studying laminin and hyaluronate has shown that these molecules have vital roles in cancer progression. More recently, fibronectin has been included as an extracellular driver of malignancy. Fibronectin is thought to play a considerable, albeit poorly understood, role in cancer pathogenesis. In this review, we present fundamental studies that have investigated the impact of fibronectin in cancer. As an abundant component of the extracellular matrix, understanding the effect of this molecule has the potential to elucidate cancer biology.


Assuntos
Fibronectinas/genética , Oncologia/tendências , Neoplasias/genética , Progressão da Doença , Matriz Extracelular/genética , Humanos , Laminina/genética , Neoplasias/metabolismo , Neoplasias/patologia
9.
Cancer Discov ; 9(12): 1708-1719, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31554641

RESUMO

Although tumor-propagating cells can be derived from glioblastomas (GBM) of the proneural and mesenchymal subtypes, a glioma stem-like cell (GSC) of the classic subtype has not been identified. It is unclear whether mesenchymal GSCs (mGSC) and/or proneural GSCs (pGSC) alone are sufficient to generate the heterogeneity observed in GBM. We performed single-cell/single-nucleus RNA sequencing of 28 gliomas, and single-cell ATAC sequencing for 8 cases. We found that GBM GSCs reside on a single axis of variation, ranging from proneural to mesenchymal. In silico lineage tracing using both transcriptomics and genetics supports mGSCs as the progenitors of pGSCs. Dual inhibition of pGSC-enriched and mGSC-enriched growth and survival pathways provides a more complete treatment than combinations targeting one GSC phenotype alone. This study sheds light on a long-standing debate regarding lineage relationships among GSCs and presents a paradigm by which personalized combination therapies can be derived from single-cell RNA signatures, to overcome intratumor heterogeneity. SIGNIFICANCE: Tumor-propagating cells can be derived from mesenchymal and proneural glioblastomas. However, a stem cell of the classic subtype has yet to be demonstrated. We show that classic-subtype gliomas are comprised of proneural and mesenchymal cells. This study sheds light on a long-standing debate regarding lineage relationships between glioma cell types.See related commentary by Fine, p. 1650.This article is highlighted in the In This Issue feature, p. 1631.


Assuntos
Neoplasias Encefálicas/genética , Redes Reguladoras de Genes , Glioblastoma/genética , Células-Tronco Neoplásicas/química , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos
11.
Crit Rev Oncol Hematol ; 142: 44-50, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31357143

RESUMO

Metastases from cells outside of the central nervous system are the most common cancer found in the brain and are commonly associated with poor prognosis. Although cancer treatment is improving overall, central nervous system metastases are becoming more prevalent and require finesse to properly treat. Physicians must consider the biology of the primary tumor and the complex neurological environment that the metastasis resides in. This can be further complicated by the fact that the practice of cancer management is constantly evolving and therapy that works outside of the blood-brain barrier may not be effective inside of it. Therefore, this review seeks to update the reader on recent advancements made on the three most common sources of brain metastases: lung cancer, breast cancer, and melanoma. Each of these malignancies has been the subject of intriguing and novel avenues of therapy which are reviewed here.


Assuntos
Neoplasias Encefálicas/terapia , Neoplasias da Mama/terapia , Neoplasias Pulmonares/terapia , Melanoma/terapia , Neoplasias Encefálicas/patologia , Neoplasias da Mama/secundário , Humanos , Neoplasias Pulmonares/secundário , Melanoma/secundário
12.
Oncotarget ; 10(22): 2212-2223, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31040912

RESUMO

Tumor-associated macrophages (TAMs) polarize to M1 and M2 subtypes exerting anti-tumoral and pro-tumoral effects, respectively. To date, little is known about TAMs, their subtypes, and their roles in non-functional pituitary adenomas (NFPAs). We performed flow cytometry on single cell suspensions from 16 NFPAs, revealing that CD11b+ myeloid cells comprise an average of 7.3% of cells in NFPAs (range = 0.5%-27.1%), with qPCR revealing most CD11b+ cells to be monocyte-derived TAMs rather than native microglia. The most CD11b-enriched NFPAs (10-27% CD11b+) were the most expansile (size>3.5 cm or MIB1>3%). Increasing CD11b+ fraction was associated with decreased M2 TAMs and increased M1 TAMs. All NFPAs with cavernous sinus invasion had M2/M1 gene expression ratios above one, while 80% of NFPAs without cavernous sinus invasion had M2/M1<1 (P = 0.02). Cultured M2 macrophages promoted greater invasion (P < 10-5) and proliferation (P = 0.03) of primary NFPA cultures than M1 macrophages in a manner inhibited by siRNA targeting S100A9 and EZH2, respectively. Primary NFPA cultures were of two types: some recruited more monocytes in an MCP-1-dependent manner and polarized these to M2 TAMs, while others recruited fewer monocytes and polarized them to M1 TAMS in a GM-CSF-dependent manner. These findings suggest that TAM recruitment and polarization into the pro-tumoral M2 subtype drives NFPA proliferation and invasion. Robust M2 TAM infiltrate may occur during an NFPA growth phase before self-regulating into a slower growth phase with fewer overall TAMs and M1 polarization. Analyses like these could generate immunomodulatory therapies for NFPAs.

13.
Neurosurg Rev ; 42(3): 639-647, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30006663

RESUMO

Functional brain mapping (FBM) is an integral part of contemporary neurosurgery. It is crucial for safe and optimal resection of brain lesions like gliomas. The eloquent regions of the cortex like motor, somatosensory, Wernicke's, and Broca are usually mapped, either preoperatively or intraoperatively. Since its birth in the nineteenth century, FBM has witnessed immense modernization, radical refinements, and the introduction of novel techniques, most of which are non-invasive. Direct electrical stimulation of the cortex, despite its high invasiveness, remains the technique of choice. Non-invasive techniques like fMRI and magnetoencephalography allow us the convenience of multiple mappings with minimal discomfort to the patients. They are quick, easy to do, and allow thorough study. Different modalities are now being combined to yield better delineations like fMRI and diffusion tensor imaging. This article reviews the physical principles, applications, merits, shortcomings, and latest developments of nine FBM techniques. Other than neurosurgical operations, these techniques have also been applied to studies of stroke, Alzheimer's, and cognition. There are strong indications that the future of brain mapping shall see the non-invasive techniques playing a more dominant role as they become more sensitive and accurate due to advances in physics, refined algorithms, and subsequent validation against invasive techniques.


Assuntos
Mapeamento Encefálico , Neuroimagem Funcional , Procedimentos Neurocirúrgicos/métodos , Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia
14.
Genome Biol ; 18(1): 234, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29262845

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are abundant in gliomas and immunosuppressive TAMs are a barrier to emerging immunotherapies. It is unknown to what extent macrophages derived from peripheral blood adopt the phenotype of brain-resident microglia in pre-treatment gliomas. The relative proportions of blood-derived macrophages and microglia have been poorly quantified in clinical samples due to a paucity of markers that distinguish these cell types in malignant tissue. RESULTS: We perform single-cell RNA-sequencing of human gliomas and identify phenotypic differences in TAMs of distinct lineages. We isolate TAMs from patient biopsies and compare them with macrophages from non-malignant human tissue, glioma atlases, and murine glioma models. We present a novel signature that distinguishes TAMs by ontogeny in human gliomas. Blood-derived TAMs upregulate immunosuppressive cytokines and show an altered metabolism compared to microglial TAMs. They are also enriched in perivascular and necrotic regions. The gene signature of blood-derived TAMs, but not microglial TAMs, correlates with significantly inferior survival in low-grade glioma. Surprisingly, TAMs frequently co-express canonical pro-inflammatory (M1) and alternatively activated (M2) genes in individual cells. CONCLUSIONS: We conclude that blood-derived TAMs significantly infiltrate pre-treatment gliomas, to a degree that varies by glioma subtype and tumor compartment. Blood-derived TAMs do not universally conform to the phenotype of microglia, but preferentially express immunosuppressive cytokines and show an altered metabolism. Our results argue against status quo therapeutic strategies that target TAMs indiscriminately and in favor of strategies that specifically target immunosuppressive blood-derived TAMs.


Assuntos
Glioma/genética , Glioma/patologia , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/patologia , Microambiente Tumoral/genética , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Glioma/imunologia , Glioma/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia/métodos , Ativação de Macrófagos/imunologia , Camundongos , Prognóstico , Análise de Célula Única , Análise de Sobrevida , Transcriptoma , Microambiente Tumoral/imunologia
15.
Proc Natl Acad Sci U S A ; 114(41): E8685-E8694, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973887

RESUMO

The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/ß1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/ß1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/ß1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and ß1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/ß1 complex to maintain the high-affinity ß1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/ß1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from ß1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5ß1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/ß1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes.


Assuntos
Neoplasias da Mama/secundário , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/secundário , Integrina beta1/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bevacizumab/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Fibronectinas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Integrina beta1/genética , Camundongos , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Am J Med Genet A ; 173(11): 2893-2897, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28985029

RESUMO

Craniosynostosis presents either as a nonsyndromic congenital anomaly or as a finding in nearly 200 genetic syndromes. Our previous genome-wide association study of sagittal nonsyndromic craniosynostosis identified associations with variants downstream from BMP2 and intronic in BBS9. Because no coding variants in BMP2 were identified, we hypothesized that conserved non-coding regulatory elements may alter BMP2 expression. In order to identify and characterize noncoding regulatory elements near BMP2, two conserved noncoding regions near the associated region on chromosome 20 were tested for regulatory activity with a Renilla luciferase assay. For a 711 base pair noncoding fragment encompassing the most strongly associated variant, rs1884302, the luciferase assay showed that the risk allele (C) of rs1884302 drives higher expression of the reporter than the common allele (T). When this same DNA fragment was tested in zebrafish transgenesis studies, a strikingly different expression pattern of the green fluorescent reporter was observed depending on whether the transgenic fish had the risk (C) or the common (T) allele at rs1884302. The in vitro results suggest that altered BMP2 regulatory function at rs1884302 may contribute to the etiology of sagittal nonsyndromic craniosynostosis. The in vivo results indicate that differences in regulatory activity depend on the presence of a C or T allele at rs1884302.


Assuntos
Proteína Morfogenética Óssea 2/genética , Anormalidades Congênitas/genética , Craniossinostoses/genética , Predisposição Genética para Doença , Alelos , Animais , Animais Geneticamente Modificados/genética , Anormalidades Congênitas/fisiopatologia , Sequência Conservada , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética , Peixe-Zebra/genética
17.
Mol Cell Endocrinol ; 446: 81-90, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28214592

RESUMO

Non-functional pituitary adenomas (NFPAs) are among the commonest intracranial neoplasms. While histologically benign, NFPAs sometimes become large enough to limit therapeutic options and reduce quality of life. Investigations of the molecular etiology of NFPAs have failed to identify prevalent genetic changes and, while a role for p53 has been suggested, TP53 gene alterations have yet to be described in NFPAs. We found that the polymorphism rs1042522:C > G in codon 72 of exon 4 of the TP53 gene, whose C variant produces a proline and is more common in most ethnicities, has a G variant producing an arginine in 79.8% of NFPAs (n = 42; p < 1.411 × 10-18 vs. 1000 Genomes database), causing patients to present a decade earlier with symptomatic NFPAs. In cultured NFPA cells, transfection with the rs1042522 G variant versus the C variant reduced expression of cell arrest gene p21 and increased proliferation. These findings suggest that this TP53 polymorphism influences NFPA growth.


Assuntos
Adenoma/genética , Predisposição Genética para Doença , Neoplasias Hipofisárias/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Supressora de Tumor p53/genética , Adenoma/irrigação sanguínea , Adenoma/patologia , Estudos de Casos e Controles , Proliferação de Células/genética , Humanos , Invasividade Neoplásica , Neovascularização Patológica/genética , Razão de Chances , Neoplasias Hipofisárias/irrigação sanguínea , Neoplasias Hipofisárias/patologia , Transcrição Gênica
18.
JCI Insight ; 2(2): e88815, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28138554

RESUMO

Clinical trials revealed limited response duration of glioblastomas to VEGF-neutralizing antibody bevacizumab. Thriving in the devascularized microenvironment occurring after antiangiogenic therapy requires tumor cell adaptation to decreased glucose, with 50% less glucose identified in bevacizumab-treated xenografts. Compared with bevacizumab-responsive xenograft cells, resistant cells exhibited increased glucose uptake, glycolysis, 13C NMR pyruvate to lactate conversion, and survival in low glucose. Glucose transporter 3 (GLUT3) was upregulated in bevacizumab-resistant versus sensitive xenografts and patient specimens in a HIF-1α-dependent manner. Resistant versus sensitive cell mitochondria in oxidative phosphorylation-selective conditions produced less ATP. Despite unchanged mitochondrial numbers, normoxic resistant cells had lower mitochondrial membrane potential than sensitive cells, confirming poorer mitochondrial health, but avoided the mitochondrial dysfunction of hypoxic sensitive cells. Thin-layer chromatography revealed increased triglycerides in bevacizumab-resistant versus sensitive xenografts, a change driven by mitochondrial stress. A glycogen synthase kinase-3ß inhibitor suppressing GLUT3 transcription caused greater cell death in bevacizumab-resistant than -responsive cells. Overexpressing GLUT3 in tumor cells recapitulated bevacizumab-resistant cell features: survival and proliferation in low glucose, increased glycolysis, impaired oxidative phosphorylation, and rapid in vivo proliferation only slowed by bevacizumab to that of untreated bevacizumab-responsive tumors. Targeting GLUT3 or the increased glycolysis reliance in resistant tumors could unlock the potential of antiangiogenic treatments.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Transportador de Glucose Tipo 3/genética , Glicólise , Inibidores da Angiogênese/farmacologia , Animais , Bevacizumab/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 3/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosforilação Oxidativa , Ácido Pirúvico/metabolismo , Regulação para Cima
19.
Cleft Palate Craniofac J ; 51(1): 115-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23566293

RESUMO

OBJECTIVE: The MAPK/ERK signaling pathway has been implicated in several craniosynostosis syndromes and represents a plausible target for therapeutic management of craniosynostosis. The causes of sagittal nonsyndromic craniosynostosis (sNSC) have not been well understood and the role that MAPK/ERK signaling cascade plays in this condition warrants an investigation. We hypothesized that MAPK-signaling is misregulated in calvarial osteoblasts derived from patients with sNSC. METHODS: In order to analyze if the MAPK/ERK pathway is perturbed in sNSC, we established primary calvarial osteoblast cell lines from patients undergoing surgery for correction of this congenital anomaly. Appropriate negative and positive control cell lines were used for comparison, and we examined the levels of phosphorylated ERK by immunoblotting. RESULTS: Primary osteoblasts from patients with sNSC showed no difference in ERK1/2 phosphorylation with or without FGF2 stimulation as compared with control osteoblasts. CONCLUSION: Under the described test conditions, we did not observe convincing evidence that MAPK/ERK signaling contributes to the development of sNSC.


Assuntos
Craniossinostoses/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Osteoblastos/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Humanos , Immunoblotting , Fosforilação , Transdução de Sinais , Crânio/citologia
20.
Birth Defects Res A Clin Mol Teratol ; 97(12): 759-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23913486

RESUMO

BACKGROUND: Bladder-exstrophy-epispadias complex (BEEC) is a severe congenital anomaly that represents a spectrum of urological abnormalities where parts or all of the distal urinary tract fail to close during development. Multiple lines of evidence strongly suggested p63 as a plausible candidate gene. We conducted a candidate gene association study to further investigate the role of p63 in human BEEC. METHODS: We conducted a family-based association study of p63 using 154 Caucasian patients with nonsyndromic BEEC and their unaffected parents. High throughput single nucleotide polymorphism (SNP) genotyping was carried out using Illumina's Golden Gate Assay for 109 selected tagging SNPs localized within p63 with a minor allele frequency > 0.01. Individual and haplotype SNP transmission disequilibrium tests were conducted using Plink and Haploview, respectively. We also examined parent-of-origin effects using paternal asymmetry tests implemented in FAMHAP (http://famhap.meb.uni-bonn.de/index.html). RESULTS: Nominally significant associations were identified between BEEC and six SNPs (rs17447782, rs1913720, rs6790167, rs9865857, rs1543969, rs4687100), and four haplotype blocks including or near these significant SNPs. Analysis of parent-of-origin effects showed significant results for seven SNPs (rs4118375, rs12696596, rs6779677, rs13091309, rs7642420, rs1913721, and rs1399774). None of these results remained significant after multiple testing correction. CONCLUSION: The altered transmission of p63 variants in nonsyndromic BEEC patients may be suggestive of its involvement in the disease etiology. Further and large multi-institutional collaborative studies are required to elucidate the role of p63 in nonsyndromic BEEC.


Assuntos
Extrofia Vesical/genética , Epispadia/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Bexiga Urinária/metabolismo , Doenças Assintomáticas , Extrofia Vesical/complicações , Extrofia Vesical/patologia , Epispadia/complicações , Epispadia/patologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Desequilíbrio de Ligação , Masculino , Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...